A graph-theoretic proof of the non-existence of self-orthogonal Latin squares of order 6

نویسندگان

  • Alewyn P. Burger
  • M. P. Kidd
  • Jan H. van Vuuren
چکیده

The non-existence of a pair of mutually orthogonal Latin squares of order six is a well-known result in the theory of combinatorial designs. It was conjectured by Euler in 1782 and was first proved by Tarry [4] in 1900 by means of an exhaustive enumeration of equivalence classes of Latin squares of order six. Various further proofs have since been given [1, 2, 3, 5], but these proofs generally require extensive prior subject knowledge in order to follow them, or are ‘blind’ proofs in the sense that most of the work is done by computer or by exhaustive enumeration. In this talk we present a graph-theoretic proof of a somewhat weaker result, namely the non-existence of self-orthogonal Latin squares of order six, by introducing the concept of a self-orthogonal Latin square graph. The advantage of this proof is that it is easily verifiable and accessible to discrete mathematicians not intimately familiar with the theory of combinatorial designs. The proof also does not require any significant prior knowledge of graph theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutually Orthogonal Latin Squares and Self-complementary Designs

Suppose that n is even and a set of n 2 − 1 mutually orthogonal Latin squares of order n exists. Then we can construct a strongly regular graph with parameters (n, n 2 (n−1), n 2 ( 2 −1), n 2 ( 2 −1)), which is called a Latin square graph. In this paper, we give a sufficient condition of the Latin square graph for the existence of a projective plane of order n. For the existence of a Latin squa...

متن کامل

On the existence of self-orthogonal diagonal Latin squares

A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. A Latin square is self-orthogonal if it is orthogonal to its transpose. In an earlier paper Danhof, Phillips and Wallis considered the question of the existence of self-orthogonal diagonal Latin squares of order 10. In this paper we shall present some constructions of self-orthogonal diagonal ...

متن کامل

A Coding Theoretic Solution to the 36 Officer Problem

Using the tools of algebraic coding theory, we give a new proof of the nonexistence of two mutually orthogonal Latin squares of order 6.

متن کامل

Incomplete self-orthogonal latin squares ISOLS(6m + 6, 2m) exist for all m

Heinrich, K., L. Wu and L. Zhu, Incomplete self-orthogonal latin squares ISOLS(6m + 6, 2m) exist fo all m, Discrete Mathematics 87 (1991) 281-290. An incomplete self-orthogonal latin square of order v with an empty subarray of order n, an ISOLS(v, n) can exist only if v 2 3n + 1. We show that an ISOLS(6m + 6, 2m) exists for all values of m and thus only the existence of an ISOLS(6m + 2,2m), m 2...

متن کامل

New construction of mutually unbiased bases in square dimensions

We show that k = w + 2 mutually unbiased bases can be constructed in any square dimension d = s provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (k, s)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011